Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732041

ABSTRACT

Oligomeric alpha-synuclein (α-syn) in saliva and phosphorylated α-syn deposits in the skin have emerged as promising diagnostic biomarkers for Parkinson's disease (PD). This study aimed to assess and compare the diagnostic value of these biomarkers in discriminating between 38 PD patients and 24 healthy subjects (HSs) using easily accessible biological samples. Additionally, the study sought to determine the diagnostic potential of combining these biomarkers and to explore their correlations with clinical features. Salivary oligomeric α-syn levels were quantified using competitive ELISA, while skin biopsies were analyzed through immunofluorescence to detect phosphorylated α-syn at Ser129 (p-S129). Both biomarkers individually were accurate in discriminating PD patients from HSs, with a modest agreement between them. The combined positivity of salivary α-syn oligomers and skin p-S129 aggregates differentiated PD patients from HSs with an excellent discriminative ability with an AUC of 0.9095. The modest agreement observed between salivary and skin biomarkers individually suggests that they may reflect different aspects of PD pathology, thus providing complementary information when combined. This study's results highlight the potential of utilizing a multimodal biomarker approach to enhance diagnostic accuracy in PD.


Subject(s)
Biomarkers , Parkinson Disease , Saliva , Skin , alpha-Synuclein , Humans , Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Saliva/metabolism , Biomarkers/metabolism , Male , Female , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Middle Aged , Aged , Skin/metabolism , Skin/pathology , Phosphorylation , Case-Control Studies
2.
J Neurol ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720139

ABSTRACT

BACKGROUND: Parkinson's disease (PD) patients are frequently exposed to antidepressant medications (ADMs). Norepinephrine (NE) and serotonin (5HT) systems have a role in levodopa-induced dyskinesias (LID) pathophysiology. METHODS: We performed a longitudinal analysis on the PPMI cohort including drug-naïve PD patients, who are progressively exposed to dopamine replacement therapies (DRTs) to test the effect of ADM exposure on LID development by the 4th year of follow-up. RESULTS: LID prevalence (according to MDS UPDRS score 4.1 ≥ 1) was 16% (42/251); these patients were more likely women (p = 0.01), had higher motor (p < 0.001) and depression scores (p = 0.01) and lower putaminal DAT binding ratio (p = 0.01). LID were associated with the exposure time to L-DOPA (2.2 ± 1.07 vs 2.6 ± 0.9, p = 0.02) and to the exposure to ADMs, in particular to SNRI (4.8% vs 21.4%, p < 0.001). The latter persisted after correcting for significant covariates (e.g., disease duration, cognitive status, motor impairment, depression, dopaminergic denervation). A similar difference in LID prevalence in PD patients exposed vs non-exposed to SNRI was observed on matched data by the real-world TriNetX repository (22% vs 13%, p < 0.001). DISCUSSION: This study supports the presence of an effect of SNRI on LID priming in patients with early PD. Independent prospective cohort studies are warranted to further verify such association.

3.
Article in English | MEDLINE | ID: mdl-38661486

ABSTRACT

BACKGROUND: 22q11.2 deletion syndrome (22q11.2DS) has been linked to an increased risk of early-onset Parkinson's disease. However, the pathophysiological mechanisms underlying parkinsonism remain poorly understood. OBJECTIVE: The objective is to investigate salivary total α-synuclein levels in 22q11.2DS patients with and without parkinsonian motor signs. METHODS: This cross-sectional study included 10 patients with 22q11.2DS with parkinsonism (Park+), ten 22q11.2DS patients without parkinsonism (Park-), and 10 age and sex-comparable healthy subjects (HS). Salivary and serum α-synuclein levels were measured using enzyme-linked immunosorbent assay. RESULTS: Salivary total α-synuclein concentration was significantly lower in Park (+) patients than in Park (-) patients and HS (P = 0.007). In addition, salivary α-synuclein showed good accuracy in discriminating Park (+) from Park (-) patients (area under the curve = 0.86) and correlated with motor severity and cognitive impairment. CONCLUSION: This exploratory study suggests that the parkinsonian phenotype of 22q11.2DS is associated with a reduced concentration of monomeric α-synuclein in biological fluids.

4.
Neural Regen Res ; 19(12): 2613-2625, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-38595280

ABSTRACT

The search for reliable and easily accessible biomarkers in Parkinson's disease is receiving a growing emphasis, to detect neurodegeneration from the prodromal phase and to enforce disease-modifying therapies. Despite the need for non-invasively accessible biomarkers, the majority of the studies have pointed to cerebrospinal fluid or peripheral biopsies biomarkers, which require invasive collection procedures. Saliva represents an easily accessible biofluid and an incredibly wide source of molecular biomarkers. In the present study, after presenting the morphological and biological bases for looking at saliva in the search of biomarkers for Parkinson's disease, we systematically reviewed the results achieved so far in the saliva of different cohorts of Parkinson's disease patients. A comprehensive literature search on PubMed and SCOPUS led to the discovery of 289 articles. After screening and exclusion, 34 relevant articles were derived for systematic review. Alpha-synuclein, the histopathological hallmark of Parkinson's disease, has been the most investigated Parkinson's disease biomarker in saliva, with oligomeric alpha-synuclein consistently found increased in Parkinson's disease patients in comparison to healthy controls, while conflicting results have been reported regarding the levels of total alpha-synuclein and phosphorylated alpha-synuclein, and few studies described an increased oligomeric alpha-synuclein/total alpha-synuclein ratio in Parkinson's disease. Beyond alpha-synuclein, other biomarkers targeting different molecular pathways have been explored in the saliva of Parkinson's disease patients: total tau, phosphorylated tau, amyloid-ß1-42 (pathological protein aggregation biomarkers); DJ-1, heme-oxygenase-1, metabolites (altered energy homeostasis biomarkers); MAPLC-3beta (aberrant proteostasis biomarker); cortisol, tumor necrosis factor-alpha (inflammation biomarkers); DNA methylation, miRNA (DNA/RNA defects biomarkers); acetylcholinesterase activity (synaptic and neuronal network dysfunction biomarkers); Raman spectra, proteome, and caffeine. Despite a few studies investigating biomarkers targeting molecular pathways different from alpha-synuclein in Parkinson's disease, these results should be replicated and observed in studies on larger cohorts, considering the potential role of these biomarkers in determining the molecular variance among Parkinson's disease subtypes. Although the need for standardization in sample collection and processing, salivary-based biomarkers studies have reported encouraging results, calling for large-scale longitudinal studies and multicentric assessments, given the great molecular potentials and the non-invasive accessibility of saliva.

5.
Neurogastroenterol Motil ; 36(5): e14780, 2024 May.
Article in English | MEDLINE | ID: mdl-38462652

ABSTRACT

BACKGROUND: Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE: In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.


Subject(s)
Endoplasmic Reticulum Stress , Neurodegenerative Diseases , Endoplasmic Reticulum Stress/physiology , Humans , Neurodegenerative Diseases/metabolism , Animals , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/pathology , Paneth Cells/metabolism , Inflammation/metabolism
6.
Eur J Histochem ; 67(4)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37859350

ABSTRACT

Cholangiocytes, the epithelial cells that line the biliary tree, can proliferate under the stimulation of several factors through both autocrine and paracrine pathways. The cocaine-amphetamine-regulated-transcript (CART) peptide has several physiological functions, and it is widely expressed in several organs. CART increases the survival of hippocampal neurons by upregulating brain-derived neurotrophic factor (BDNF), whose expression has been correlated to the proliferation rate of cholangiocytes. In the present study, we aimed to evaluate the expression of CART and its role in modulating cholangiocyte proliferation in healthy and bile duct ligated (BDL) rats in vivo, as well as in cultured normal rat cholangiocytes (NRC) in vitro. Liver samples from both healthy and BDL (1 week) rats, were analyzed by immunohistochemistry and immunofluorescence for CART, CK19, TrkB and p75NTR BDNF receptors. PCNA staining was used to evaluate the proliferation of the cholangiocytes, whereas TUNEL assay was used to evaluate biliary apoptosis. NRC treated or not with CART were used to confirm the role of CART on cholangiocytes proliferation and the secretion of BDNF. Cholangiocytes proliferation, apoptosis, CART and TrkB expression were increased in BDL rats, compared to control rats. We found a higher expression of TrkB and p75NTR, which could be correlated with the proliferation rate of biliary tree during BDL. The in vitro study demonstrated increased BDNF secretion by NRC after treatment with CART compared with control cells. As previously reported, proliferating cholangiocytes acquire a neuroendocrine phenotype, modulated by several factors, including neurotrophins. Accordingly, CART may play a key role in the remodeling of biliary epithelium during cholestasis by modulating the secretion of BDNF.


Subject(s)
Bile Ducts , Brain-Derived Neurotrophic Factor , Nerve Tissue Proteins , Animals , Rats , Bile Ducts/cytology , Bile Ducts/metabolism , Bile Ducts/pathology , Brain-Derived Neurotrophic Factor/metabolism , Cell Proliferation , Epithelium/metabolism , Nerve Tissue Proteins/metabolism
7.
Mov Disord Clin Pract ; 10(8): 1198-1202, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37635779

ABSTRACT

Background: Distal upper limb tremor during walking (TW) is frequently observed in Parkinson's disease (PD) but its clinical features are unknown. Objective: To characterize the occurrence and the clinical features of TW in comparison to the other types of tremors in PD. Methods: Fifty-one PD patients with rest tremor were evaluated off- and on-treatment. Occurrence, body distribution, severity and latency of TW and of other tremor types were assessed. Results: TW was present in 78% of the PD patients examined. TW body distribution and severity were similar to those of rest and re-emergent tremor but different from the postural tremor presented by the same patients. TW latency, observed in 85% of patients, was on average 5.8 s. Dopaminergic treatment significantly improved TW, rest, and re-emergent tremor severity but left TW latency unaffected. Conclusions: TW is a frequent motor sign in PD and is likely a clinical variant of rest tremor.

10.
Ann Neurol ; 93(3): 446-459, 2023 03.
Article in English | MEDLINE | ID: mdl-36385395

ABSTRACT

OBJECTIVE: To investigate molecular biomarkers of a-synuclein and tau aggregation, autophagy, and inflammation in the saliva of de novo Parkinson's disease (PD) patients in comparison to healthy subjects (HS), and to correlate molecular data with clinical features of PD patients, in order to establish whether abnormalities of these parameters are associated with specific clusters of de novo PD patients, and their potential diagnostic power in differentiating PD patients from HS. METHODS: We measured total and oligomeric a-synuclein, total-tau and phosphorylated-tau, microtubule-associated protein light chain 3 beta (MAP-LC3beta), and tumor necrosis factor alpha (TNFalpha) in the saliva of 80 de novo PD patients and 62 HS, using quantitative enzyme-linked immunosorbent Assay analysis. RESULTS: Oligomeric a-synuclein, total-tau, MAP-LC3beta, and TNFalpha levels resulted significantly higher in patients with respect to HS, while no significant differences were detected for total a-synuclein or phosphorylated-tau. Phosphorylated-tau directly correlated with MAP-LC3beta, whereas it inversely correlated with TNFalpha in PD patients. An inverse correlation was detected between MAP-LC3beta and non-motor symptoms severity. Principal Component Analysis showed that molecular and clinical parameters were independent of each other in de novo PD patients. Receiver operating characteristic curve analysis reported an accurate diagnostic performance of oligomeric a-synuclein and MAP-LC3beta. The diagnostic accuracy of total a-synuclein increased when it was combined with other salivary biomarkers targeting different molecular pathways. INTERPRETATION: Our study proposes a novel biomarker panel using saliva, a non-invasive biofluid, in de novo PD patients, with implications in understanding the molecular pathways involved in PD pathogenesis and the relevance of different molecular pathways in determining clinical PD subtypes. ANN NEUROL 2023;93:446-459.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , alpha-Synuclein/metabolism , Tumor Necrosis Factor-alpha , tau Proteins , Biomarkers
11.
Life (Basel) ; 12(12)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36556493

ABSTRACT

Liver cancer represents a global health challenge with worldwide growth. Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Indeed, approximately 90% of HCC cases have a low survival rate. Moreover, cholangiocarcinoma (CC) is another malignant solid tumor originating from cholangiocytes, the epithelial cells of the biliary system. It is the second-most common primary liver tumor, with an increasing course in morbidity and mortality. Tumor cells always show high metabolic levels, antioxidant modifications, and an increased iron uptake to maintain unlimited growth. In recent years, alterations in iron metabolism have been shown to play an important role in the pathogenesis of HCC. Several findings show that a diet rich in iron can enhance HCC risk. Hence, elevated iron concentration inside the cell may promote the development of HCC. Growing evidence sustains that activating ferroptosis may potentially block the proliferation of HCC cells. Even in CC, it has been shown that ferroptosis plays a crucial role in the treatment of tumors. Several data confirmed the inhibitory effect in cell growth of photodynamic therapy (PDT) that can induce reactive oxygen species (ROS) in CC, leading to an increase in malondialdehyde (MDA) and a decrease in intracellular glutathione (GSH). MDA and GSH depletion/modulation are crucial in inducing ferroptosis, suggesting that PDT may have the potential to induce this kind of cell death through these ways. A selective induction of programmed cell death in cancer cells is one of the main treatments for malignant tumors; thus, ferroptosis may represent a novel therapeutic strategy against HCC and CC.

12.
Sensors (Basel) ; 22(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35161694

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder associated with widespread aggregation of α-synuclein and dopaminergic neuronal loss in the substantia nigra pars compacta. As a result, striatal dopaminergic denervation leads to functional changes in the cortico-basal-ganglia-thalamo-cortical loop, which in turn cause most of the parkinsonian signs and symptoms. Despite tremendous advances in the field in the last two decades, the overall management (i.e., diagnosis and follow-up) of patients with PD remains largely based on clinical procedures. Accordingly, a relevant advance in the field would require the development of innovative biomarkers for PD. Recently, the development of miniaturized electrochemical sensors has opened new opportunities in the clinical management of PD thanks to wearable devices able to detect specific biological molecules from various body fluids. We here first summarize the main wearable electrochemical technologies currently available and their possible use as medical devices. Then, we critically discuss the possible strengths and weaknesses of wearable electrochemical devices in the management of chronic diseases including PD. Finally, we speculate about possible future applications of wearable electrochemical sensors in PD, such as the attractive opportunity for personalized closed-loop therapeutic approaches.


Subject(s)
Parkinson Disease , Wearable Electronic Devices , Biomarkers , Corpus Striatum , Dopamine , Humans , Parkinson Disease/diagnosis
13.
Neurotox Res ; 39(2): 156-169, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33206341

ABSTRACT

The neurotoxin 1-methyl, 4-phenyl, 1, 2, 3, 6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism. Such a disease is characterized by neuronal damage in multiple regions beyond the nigrostriatal pathway including the spinal cord. The neurotoxin MPTP damages spinal motor neurons. So far, in Parkinson's disease (PD) patients alpha-synuclein aggregates are described in the dorsal horn of the spinal cord. Nonetheless, no experimental investigation was carried out to document whether MPTP affects the sensory compartment of the spinal cord. Thus, in the present study, we investigated whether chronic exposure to small doses of MPTP (5 mg/kg/X2, daily, for 21 days) produces any pathological effect within dorsal spinal cord. This mild neurotoxic protocol produces a damage only to nigrostriatal dopamine (DA) axon terminals with no decrease in DA nigral neurons assessed by quantitative stereology. In these experimental conditions we documented a decrease in enkephalin-, calretinin-, calbindin D28K-, and parvalbumin-positive neurons within lamina I and II and the outer lamina III. Met-Enkephalin and substance P positive fibers are reduced in laminae I and II of chronically MPTP-treated mice. In contrast, as reported in PD patients, alpha-synuclein is markedly increased within spared neurons and fibers of lamina I and II after MPTP exposure. This is the first evidence that experimental parkinsonism produces the loss of specific neurons of the dorsal spinal cord, which are likely to be involved in sensory transmission and in pain modulation providing an experimental correlate for sensory and pain alterations in PD.


Subject(s)
MPTP Poisoning/pathology , Neurons/drug effects , Neurons/pathology , Parkinsonian Disorders/pathology , Spinal Cord/drug effects , Spinal Cord/pathology , Animals , Corpus Striatum/drug effects , Corpus Striatum/pathology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Mice, Inbred C57BL , Phenotype
14.
Neurotox Res ; 37(2): 298-313, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31721049

ABSTRACT

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.


Subject(s)
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Motor Neurons/drug effects , Motor Neurons/pathology , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/pathology , Animals , Male , Mice , Mice, Inbred C57BL
15.
Parkinsonism Relat Disord ; 63: 143-148, 2019 06.
Article in English | MEDLINE | ID: mdl-30796010

ABSTRACT

INTRODUCTION: Alpha-synuclein (α-syn) aggregation is the pathological hallmark of Parkinson's Disease (PD). In this study, we measured α-syn total (α-syntotal), oligomeric α-syn (α-synolig) and α-synolig/α-syntotal ratio in the saliva of patients affected by PD and in age and sex-matched healthy subjects. We also compared salivary α-syntotal measured in PD with those detected in Progressive Supranuclear Palsy (PSP), in order to assess whether salivary α-syn can be used as a biomarker for PD and for the differential diagnosis between PD and PSP. METHODS: We studied 100 PD patients, 20 patients affected by PSP and 80 age- and sex-matched healthy subjects. ELISA analysis was performed using two commercial ELISA platforms and a specific ELISA assay for α-syn aggregates. RESULTS: We detected lower α-syntotal and higher α-synolig in PD than in healthy subjects. Conversely in PSP salivary α-syntotal concentration was comparable to that measured in healthy subjects. Receiver Operating Characteristic analyses revealed specific cut-off values able to differentiate PD patients from healthy subjects and PSP patients with high sensitivity and specificity. However, there was no significant correlation between clinical and molecular data. CONCLUSION: Salivary α-syn detection could be a promising and easily accessible biomarker for PD and for the differential diagnosis between PD and PSP.


Subject(s)
Parkinson Disease/diagnosis , Supranuclear Palsy, Progressive/diagnosis , alpha-Synuclein/metabolism , Aged , Biomarkers/metabolism , Cohort Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Parkinson Disease/metabolism , Saliva/metabolism , Supranuclear Palsy, Progressive/metabolism
17.
PLoS One ; 11(3): e0151156, 2016.
Article in English | MEDLINE | ID: mdl-27011009

ABSTRACT

In Parkinson's disease (PD), alpha-synuclein (a-syn) can be detected in biological fluids including saliva. Although previous studies found reduced a-syn total (a-syntotal) concentration in saliva of PD patients, no studies have previously examined salivary a-syn oligomers (a-synolig) concentrations or assessed the correlation between salivary a-syntotal, a-synolig and clinical features in a large cohort of PD patients. Is well known that a-synolig exerts a crucial neurotoxic effect in PD. We collected salivary samples from 60 PD patients and 40 age- and sex-comparable healthy subjects. PD was diagnosed according to the United Kingdom Brain Bank Criteria. Samples of saliva were analyzed by specific anti-a-syn and anti-oligomeric a-syn ELISA kits. A complete clinical evaluation of each patient was performed using MDS-Unified Parkinson's Disease Rating Scale, Beck Depression Inventory, Montreal Cognitive Assessment and Frontal Assessment Battery. Salivary a-syntotal was lower, whereas a-synolig was higher in PD patients than healthy subjects. The a-synolig/a-syntotal ratio was also higher in patients than in healthy subjects. Salivary a-syntotal concentration negatively correlated with that of a-synolig and correlated with several patients' clinical features. In PD, decreased salivary concentration of a-syntotal may reflect the reduction of a-syn monomers (a-synmon), as well as the formation of insoluble intracellular inclusions and soluble oligomers. The combined detection of a-syntotal and a-synolig in the saliva might help the early diagnosis of PD.


Subject(s)
Parkinson Disease/diagnosis , Parkinson Disease/metabolism , Protein Aggregates , Saliva/metabolism , alpha-Synuclein/analysis , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Biomarkers/metabolism , Cohort Studies , Early Diagnosis , Female , Humans , Male , Middle Aged , Saliva/chemistry , Solubility , alpha-Synuclein/metabolism
18.
J Comp Neurol ; 523(7): 1095-124, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25488013

ABSTRACT

Alpha synuclein (α-syn) is a 140 amino acid vertebrate-specific protein, highly expressed in the human nervous system and abnormally accumulated in Parkinson's disease and other neurodegenerative disorders, known as synucleinopathies. The common occurrence of α-syn aggregates suggested a role for α-syn in these disorders, although its biological activity remains poorly understood. Given the high degree of sequence similarity between vertebrate α-syns, we investigated this proteins in the central nervous system (CNS) of the common carp, Cyprinus carpio, with the aim of comparing its anatomical and cellular distribution with that of mammalian α-syn. The distribution of α-syn was analyzed by semiquantitative western blot, immunohistochemistry, and immunofluorescence by a novel monoclonal antibody (3D5) against a fully conserved epitope between carp and human α-syn. The distribution of 3D5 immunoreactivity was also compared with that of choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), and serotonin (5HT) by double immunolabelings. The results showed that a α-syn-like protein of about 17 kDa is expressed to different levels in several brain regions and in the spinal cord. Immunoreactive materials were localized in neuronal perikarya and varicose fibers but not in the nucleus. The present findings indicate that α-syn-like proteins may be expressed in a few subpopulations of catecholaminergic and serotoninergic neurons in the carp brain. However, evidence of cellular colocalization 3D5/TH or 3D5/5HT was rare. Differently, the same proteins appear to be coexpressed with ChAT by cholinergic neurons in several motor and reticular nuclei. These results sustain the functional conservation of the α-syn expression in cholinergic systems and suggest that α-syn modulates similar molecular pathways in phylogenetically distant vertebrates.


Subject(s)
Central Nervous System/cytology , Neurons/metabolism , alpha-Synuclein/metabolism , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity , Blotting, Western , Brain/anatomy & histology , Brain/cytology , Carps/anatomy & histology , Central Nervous System/anatomy & histology , Choline O-Acetyltransferase/metabolism , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Neurons/cytology , Serotonin/metabolism , Species Specificity , Spinal Cord/anatomy & histology , Tyrosine 3-Monooxygenase/metabolism
19.
Ital J Anat Embryol ; 119(2): 111-29, 2014.
Article in English | MEDLINE | ID: mdl-25665281

ABSTRACT

Cholangiocytes are the cells lining the biliary tree from canals of Hering to larger bile ducts. By morphology, they are divided in small and large cholangiocytes, which result heterogeneous at functional and proliferative levels. Proliferating cholangiocytes acquire a neuroendocrine phe- notype, modulated by several factors including neurotrophins. Brain Derivated Neurotrophic Factor (BDNF) is a neurotrophin expressed in the nervous system and also in different types of epithelial and progenitor cells. The aim of the present study is to detect the expression of BDNF and of its two receptors (TrKB and p75NT, or p75NTR) in normal and bile duct ligated (BDL) rat livers. In normal and BDL livers, BDNF and its receptors are expressed by small and large cholan- giocytes and by hepatic progenitors cells. In cholangiocytes, the expression of BDNF and of its receptors changes after different BDL timing. After one or two weeks of BDL, both BDNF and TrKB and p75NT receptors are highly expressed, while after BDL for three weeks BDNF expression is drastically reduced and p75NT receptor prevails on TrKB. The expression of BDNF and of its receptors correlates with the proliferation rate of biliary tree during BDL. Indeed, after one or two weeks of BDL, proliferation prevails on apoptosis, whereas after BDL for three weeks, apoptosis prevails on proliferation. Our morphological results strongly suggest that BDNF plays a role in the remodeling of biliary tree during cholestasis and that it may be involved in the pathophysiology of cholestasic liver diseases.


Subject(s)
Bile Ducts/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Cholestasis/metabolism , Neuroendocrine Cells/metabolism , Receptor, trkB/metabolism , Receptors, Nerve Growth Factor/metabolism , Animals , Bile Ducts/pathology , Cholestasis/pathology , Male , Nerve Tissue Proteins , Neuroendocrine Cells/pathology , Rats, Wistar , Receptors, Growth Factor
20.
Arch Ital Biol ; 151(4): 203-18, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24873928

ABSTRACT

Neurodegenerative diseases (NDs) include a large variety of disorders that affects specific areas of the centralnervous system, leading to psychiatric and movement pathologies. A common feature that characterizes thesedisorders is the neuronal formation and accumulation of misfolded protein aggregates that lead to cell death. Inparticular, different proteinaceous aggregates accumulate to trigger a variety of clinical manifestations: prionprotein (PrPSc) in prion diseases, ß-amyloid (Aß) in Alzheimer's disease (AD), α-synuclein in Parkinson's disease(PD), huntingtin in Huntington's disease (HD), superoxide dismutase and TDP-43 in amyotrophic lateral sclerosis(ALS), tau in tauopathies. Non-motor alterations also occur in several viscera, in particular the gastrointestinaltract. These often precede the onset of motor symptoms by several years. For this reason, dysautonomic changescan be predictive of NDs and their correct recognition is being assuming a remarkable importance. This peculiarfeature led more and more to the concept that neurodegeneration may initiate in the periphery and propagate retrogradelytowards the central nervous system in a prion-like manner. In recent years, a particular attention wasdedicated to the clinical assessment of autonomic disorders in patients affected by NDs. In this respect, experimentalanimal models have been developed to understand the neurobiology underlying these effects as well as toinvestigate autonomic changes in peripheral organs. This review summarizes experimental studies that have beencarried out to understand autonomic symptoms in NDs, with the purpose to provide appropriate tools for comprehensiveand integrated studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...